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Abstract

An asymmetric spur gear drive is consid: red. The asymmetry meuns that Iarger and smaller pressure angles are applied for the
driving and coist sides. respectively. The conventionzl design of such a drive is bused on upplicution of involute profiles. The authors
propose a modified geometry of an asymmetric spur gear drive designed as a combination of an involute gear and o double crowned
pinion that enables to localize and stabilize the bearing contact and obtain a fiuvorabic shape of transmission errors of reduced
magnitude. Computerized design of spur gears of proposed geometry and simulation of their meshing and contact have been devel-
oped. A method of generation of a double-crowned pinion has been developed as well stress analysis of symmetric and asymmetric spur
gears have been accomplished, that confirm reduction of contact and bending stresses for an asvmmetric spur gear drive. The
developed theory is illustrated with numerical examples. © 2000 Elsevier Science S.A. All rights reserved.
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Nomenclature

a{i=d, c) Pressure angles for asymmetric spur gear drive: (i=d) for driving side profile. (;=¢)-
for coast side profile (Figs. 1, 2 and 7)

o (i=d, ¢) Profiie angles for rack-cutter (Fig. 6)

AE. v, 4 Errors of misalignment of center distance E, angle ;' between rotational axes and lead
angle 4

8; , Surface parameters of rack-cutter for generating of pinion (/=c) and gear (j=1)

Kg o Curvature of parabolic pinion rack-cutter at point Q, (Fig. 7)

A Ratio of tooth thickness of pinion and gear measured on meshing centrodes

v Poisson’s ratio

P Radius of rack-cutter fillet (Fig. 6) :

p; (i=1, 2) Radius of pinion and gear centrodes being in mesh with the rack-cutter (Figs. 23 and
26) :

Zi(i=c, t) Rack-cutter surfaces for generation of the pinion (i =c¢) and the gear (i=t)

Z; and X, Pinion and gear tooth surfaces being in mesh with each other

-
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1.

represented in [8].

1.

2.

2 (i=1,2)

=9 9
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Pinion tooth surface generated as envelope to rack-cutter surface { Z 1), and as
envelope to the surface of plunging disk (Z\")

Angle formed by axes x4 and x, (Fig. 2(b))

Generalized parameter of motion in process of meshing of pinion and gear
Generalized parameter of motion in process of generation of pinion (i=/) and gear
(i=2)

Parabola coefficient of predesigned parabolic function of transmission errors (Eq.
(29))

Parabola coeflicient of parabolic profile of rack-cutter (Eq. (25))

Parabola coeflicient of parabelic function of plunging (Fig. 8}

Initial and current shortest center distances in generation by a plunging disk (F1g 8)
Finite element, finite element analysis

The magnitude of distance from point Oy to point P in Fig. 7

Displacement of disk in translation in direction parallel to the pinion axis (Fig. 8)
The magnitude of distance from peint B to point A in Fig. 6

Matrices 4 x 4 and 3 x 3 for transformation from §; to S, of point coordinates and
projections of vectors

Number of teeth of the pinion {i=1/) and the gear (i =2)

Normals to the surfaces of rack-cutters or disk represented in coordinate system S;
{i=a,c.D,e, t)

Unit normals to the pinion (/=) and gear (i =
fixed coordinate system

Diametral pitch of the gear drive (P}, generating rack-cutter (£}

Instantaneous axis of rotation

Radii of addendum circle, pitch circle , and base circles for driving side (i =d) and
coast side (i =c) profiles (Figs. 2—4)

Radii of base circles of pinion and gear being in mesh (Fig. 5)

Position vector of parabolic rack-cutter surface represented in coordinate system S;
(i=a,c)

Designation of 7 coordinate system

Tooth thickness of the pinion (/= p) or the gear (/ = g) measured along the centrodes
(Eq. (1))

Vector of relative velocity of the plunging disk with respect to the pinion represented
in coordinate sysiem Sp

Width of space of the pinion (k =p) and gear (k = g) rack-cutters measured on
centrodes (see Egs. {2) and (3))

2) tooth surfaces represented in the

Asymmetric spur gear drives was the subject of research accomplished previously in [5.8]. Unlike the
version of asymmetric spur gear drives represented in [5], a larger pressure angle for the driving side but not
for the coast one has been proposed in [8]. The detailed geometry of asymmetric spur gears has been

New developments of asymmetric spur gear drives (with a larger pressure angle for the driving side) are
represented in this paper. The contents of the paper cover:
Basic geometric relations for an asymmetric spur gear drive with a larger pressure angle for the driving

side.

Modification of pinion geometry that enables: (1) to reduce the level of transmission errors and provide a
more favorable shape for the function of transmission errors, and (ii) localize and stabilize the bearing

contact.

r

Computerized simulation of meshing and contact of a misaligned gear drive by application of developed
Tooth Contact Analysis (TCA) computer program.
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4. Determination of contact and bending stress and comparison with the stresses determined for a symmet-
ric spur gear drive. It is proven that an asymmetric gear drive enables to reduce the stresses for the driv-
ing side of profiles.

The proposed modification of geometry is based on application of a predesigned parabolic function of
transmission errors and double crowning of pinion tooth surface. This enables to reduce the effect of gear
misalignment.

The developed theory is illustrated with numerical examples.

2. Preliminary considerations and relations (pressure angles, base circles, lines of action, centrodes)

The asymmetry of profiles of discussed Spur gears means that different pressure angles are applied for the
driving and coast side profiles. Due to application of different pressure angles, the pinion and the gear are
provided for two side profiles with base circles of different diameters. Fig. 1(a) and {b) show the pinion-gear
base circles for the driving and coast sides, respectively, However, the centrodes (the operating pitch circles)
are the same for both side profiles when the meshing of the pinion and the gear is considered. The centrodes
are in tangency at point P that is the instantaneous center of rotation. The line of action for each side of
profiles is the common tangent to the respective pair of base circles. The pressure angle 1s formed by the line
of action and the tangent to the pitch circles. '

Relation between pinion—gear tooth thicknesses: In case of a standard gear drive the tooth thicknesses Sp
and s, of the pinion and the gear (measured along the centrodes) are equal. However. the pinion and gear of
an asymmetric gear drive are designed as nonstandard ones and parameters s, and s, are related as follows:

L= - | | (1)

Sy

where / is an assigned parameter
Due to rolling of centrodes, we have that

Sg = ‘yvp’ ) . . . . (2)
Li f acti
0, ne o on 0,
e
&z
o,
P
Centrode
Line of action
Driving side Op Coast side
bage circles base circles

(a) o (b)

Fig. 1. Centrodes. lines of action and base circles in asymmetric gear drive.
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Sp = Wg, _' : I ' - . (3)
where w;, (k=p, g) is the width of space of the respective rack-cutter.
It is easy to be verified that
T _ o
Sp+wpzsg+wg=P=?» _ : “)

where p and P are the circular and diametral pitches.
Then we obtain the following expressions for s, and s,

_ A _ AT .
1424 (I+i)P’ . o (5)

Sp

Sp r i3 ' : ' N
S, =—= — = - i 6
B4 1+A4 (44)P . (6)

Radii of base circles: The radius of the base circle and the radius of the centrode (operating pitch circle)
are related by the equation

Foi = rp €OS % = N oosa, (i=d.o), ' | ' M
2P
where 7, is the radius of the respective centrode (of the pinion or the gear), N the respective number of teeth
(of the pinion or the gear), P the diametral pitch and «; the pressure angle.

Henceforth we will consider four base circles: two for the driving and coast sides of the pinion and two
for the respective sides of the gear. There are two values % and x. of the pressure ar* “'es. for the driving and
coast sides, and x4, (respectively, ) is the same for the pinion and the gear. The pairs of base circles of the
pinion (respectively, of the gear) have a common center.

3. Analytical presentation of involute profiles

Drawings of Fig. 2 represent involute profiles of an asymmetric tooth. The drawings with specified
designations can be referred to the pinion or to  the gear.

We consider as given the following input: (i) DC = s,, the tooth thickness on the pitch circle, (i) radius
r, of the operating pitch circle, (iii) pressure angles g and «. of the driving and coast profiles. (iv) radii of

respective base circles g and ry, for the driving and coast sides. The goal 1s to represent analytically the

tooth profiles.
Driving profile: The representation of the driving profile is based on following considerations {Fig. 2(a)):

Step 1. Point Dy of the involute profile belongs to the base circle g and its location with respect to point

D is determined by the angle
inv{xy) = tan ag — 4. | _ : ' ' _ 3 (8)

Step 2. We represent the involute profile in coordinate system Sg(xq4,v4) which axis x4 is drawn from O to
D,. Instantaneous point A, of the profile is identified by variable parameter ¢,. The equations of the profile
are represented as follows [9]

xa(Pq) = reaf{cos ¢y + Pgsin qbd), ' : _ o)
ya(g) = rea(sin @y — dy08 dy). - o

Coast profile: We represent the coast profile C;—C-B in coordinate system S. (Fig. 2(b)) by equations
similar to Eq. (9)
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Fig. 2. Representation of driving profile (a), and coast profile (b),

¥e(e) = ric(cos &, + o sin 4,), - : \ (o)
-vc(qb‘?) = rbC(Sin ¢c — ¢\: Cos qbc) .' . . . o . . .

The variable parameter ¢_ determines current point M, of coast profile. Axes x, and x. form angle ¢ that is
determined by the following equation

G =inv(o:d)+i—p+inv(ac). | ' o . - - (11)
P
where s, = DC {Fig. 2(a)). .

Addendum tooth thickness: Circular arc AB = s, represents the tooth thickness on the addendum circle of
radius r, (Fig. 3). We may determine s, by using the following procedure of derivations:
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Fig. 3. For determination of addendum tooth thickness.

Step 1. Considering radius r, as given, we obtain

)+ () =

h¥

C .

(12)

We designate by qbfi‘“ the variable parameter ¢, for point 4 of the driving profile (Fig. 2). Using Eqs. (9) and

(12), we obtain

)

o = (r—“)"—l.
Fha

- Step 2. Taking into account that
inv(a}") = tan (" — 2}, tan " = @}".
we obtain that
inv(a}") = ¢} — arctan PLh.

Step 3. Similar derivations applied for the coast side yield that

2
¢ = (.._”a ) ~1
I 3
Foe -

inv(«{®) = ¢{® — arctan ¢{*.

(13)

(14)

(15)
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Step 4. Drawings of Fig. 3 yield
Sa="r, (0' — inv(a:ff)) — inv(acﬂ))). _ o _ (16)

Here: parameter o can be determined by using Eq. (11), inv(«}") by using Eqgs. (13) and (14), and inv(«(#))
by using Eq. (15).

Step 5. The derived equations enable to obtain radius , for a pointing tooth taking in Eq. (16) that
5, =0,

4. Design -parametérs of rack-cutter

Generation of conventional spur gears by a hob is based on the idea of meshing of spur gears with an
imaginary rack-cutter. It is known from the theory of involute gearing, that the generation of a spur gear
with the given radius of the base circle may be accomplished by a rack-cutter with a profile angle that differs
from the pressure angle of the spur gear drive. The decrease of the profile angles «; and «; of the rack-cutter
in comparison with the pressure angles %4 and x. applied for the spur gear drive, enables to increase the
radius of the rack-cutter fillet, obtain a more favorable fillet shape for the generated gears and reduce the
bending stresses. :

Determination of design parameters of the rack-cutter is based on the following procedure of deriva-
tions: '

Step 1. The change of the profile angle of the rack-cutter will affect the radii of the centrodes of the
pinion and consequently the gear being in mesh with the rack-cutter. Thus we have

rp COS & =7, COS o = ry,. (j=d,c), S {17}

where r, and rp are the radii of centrodes of the pinion being in mesh with the gear and the rack-cutter,
respectively.
Similar equations can be derived for the gear of the drive.

Eq. (17) yield
cos o, TR :
. _ 05 % . | | T | 18
cos 2] o zxdc s a : | (18)

Eq. (18) represents the relation between the profile angles a; and o of the rack-cutter. One parameter of the
couple of parameters («, «}) can be chosen and the other obtained from Eq. (18). B
Step 2. The distance measured along the common normal to the driving or coast side profiles of the
pinion {or the gear) must be the same as the distance measured between the respective profiles of the rack-
cutter. Using this consideration, we obtain that the diametral pitch of the rack-cutter and spur gear drive
are related as follows
pr=pSB 4 _ plosx - I - (19)
cos ay COS o, : = - S

Step 3. We designate by s, the tooth thickness of the pinion determined from the conditions of meshing
of the pinion with the rack-cutter; s, 1s measured on the centrode of the pinion being in mesh with the rack-
cutter.

Drawings of Fig. 4 yield

*

COS oy
s =r
P Pcos af

(f_—p+ inv(ag) — inv(a}) + inv(a.) — inv(a;‘)). - o ' | (20)
p .

Similarly we can determine the tooth thickness of the gear on its centrode determined from meshing of the
gear with the rack-cutter. .

The width of the space of the rack-cutter on the respective centrode is equal to the tooth thickness of the
pinion (respectively, the gear) measured on the mentioned centrode.
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Centrode in mesh with
the rack-cutter

Centrode in mesh with :
mating gear

Fig. 4. For derivation of tooth thickness on centrodes in meshing with the rack-cutter and mating gear,

Step 4. Determination of radius p of the rack-cutter fillet (Fig. 6) is based on the following consider-
ations:

(i) The working part of line of action of meshing pinion and gear is segment KL (Fig. 5) where Kand L
are the points of intersection of the line of action by the addendum circles of the pinion and the gear,
respectively. Knowing the location of points X and L on both lines of action (for both side profiles) and
considering the meshing of the rack-cutter with the pinion and the gear, we can determine such a point on
the profile of the rack-cutter (designated as M in Fig. 6) that will provide a sufficient tooth length of the
involute profile of the pinion and the gear.

It is necessary for this purpose to consider the meshing of the rack-cutter with both, the pinion and the
gear, for both tooth sides: the driving and the coast sides. Usually, it is sufficient to consider the meshing of
the rack-cutter and the driving side profile of the pinion.

(ii) Fig. 6 shows the middle line,m—m of the rack-cutter, the centrode a—a of the rack-cutter being in mesh
with the pinion. The extended profiles of the rack-cutter tooth form triangle 48D, where AB=mn/P" —s,
and the profile angles «; and «; are considered as known. The location of point M on the rack-cutter
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Line of action

Fig. 5. Representation of working part KL of line of action.

profile is designated as Iy = |W! It is easy to be verified that center C of the circular arc of the fillet belongs
to the bisector of angle 4DB. Drawings of Fig. 6 yield the following equation for determination of radius p of
the rack-cutter fillet.

ABcos o — Iy sin (o} + o)
2 cos? (a +az/2)

b= 1)

Parameter /, in Eq. (21) is determined by considering the conditions of meshing of the rack-cutter with the
generated pinion and gear. Point M of the rack-cutter generates the respective point of the involute profile
of the pinion and the gear that might be the limiting point of the addendum profile.

5. Modification of tooth geometry: basic principles
Double crowning of pinion: The purposes of modification of tooth geometry are: (1) reduction of noise,

and (ii) localization of bearing contact. Both goals are achieved by double- crowning of the pinion tooth
surface, in profile and longitudinal directions. Profile crowning enables to reduce the magnitude of
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- -/

. S]')

M

0g+0g
D 2

Fig. 6. For determination of radius p of the rack-cutter fillet.

transmission errors and obtain a favorable shape of such errors caused by misalignment; transmission
errors are caused by gear misalignment. Longitudinal crowning of the pinion enables to substitute in-
stantaneous line contact of pinion—gear tooth surfaces by instantaneous point contact. Then. the bearing
contact becomes localized, located in the middle of gear tooth surfaces, and edge contact (caused by
misalignment) can be avolded.

We remind that transmission errors of a misaligned gear drive are the source of vibration and noise.
Edge contact is the result of the shift of bearing contact due to misalignment of pinion- gear tooth surfaces
being in instantaneous line contact. . ;

Point contact of tooth surfaces is spread under the load on an elliptical area. Therefore. the real bearing
contact of a loaded gear drive is formed as a set of instantaneous contact ellipses.

The concept of pinion profile crowning is based on application of two imaginary mismatched rack-
cutters which cross-section profiles are represented in Fig. 7. The profile of the gear rack-cutter is a straight
line and the pinion rack-cutter has a parabolic profile. Due to the mismatch of profiles of mating rack-
cutters, by designating a proper parabola coefficient for the pinion parabolic rack-cutter. it becomes
possible to control the transmission errors of a misaligned spur gear drive.

The concept of longitudinai crowning is based on variation of the plunging tool in the process of pinion
generation. The plunge of the tool that is a grinding disk (Fig. 8) provides longitudinal crowning of pinion
tooth surface.

Pinion profile crowning: Fig. 7 shows the mismatched profiles of the gear and rack- cutter cross-section
profiles that are a straight line and a parabolic curve, respectively. The profiles mentioned above are in
tangency at points Q4 on the driving side and Q. on the coast side. The normals to the profiles at points Qg
and O, pass through point P that lies on the center distance of the gear drive.

The surfaces of the rack-cutters are a plane and a parabolic cylinder. It is assumed that the gear and
pinion rack-cutters generate the gear and pinion separately. The pinion and gear tooth surfaces (generated
by rack-cutters mentioned above) are in line contact in an aligned gear drive. The instantaneous lines of
tangency of pinion and gear tooth surfaces are parallel to their axes of rotation (in an aligned gear drive).
However, the transformation of rotation by the gear drive is not performed with a constant gear ratio
mi» = w'!) Jw'? since the pinion rack-cutter profile is mismatched with respect to the gear rack-cutter.

Usually, errors of alignment A¢,(¢,) of a gear drive cause a piecewise transformation function @-(¢,)-
The function of transmission errors A¢.(¢,) 1s determined as
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Gear rack-cutter

Pinon rack-cutter

Driving side Coast side

Centrodes

AN
/ i
I
% D “ﬂ’-g—f
_ 2y
Eo £
Pinion
_ - Y — - =
0.5 b

Fig. 8. Grinding disk for pinion longitudinal crowning.
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T e e A €

LT
Ny

Fig. 9. Transmission function of misaligned geare drive (a); function of transmission errors (b).

Ad:(6) = 6:(61) - 3 1, | @)

where ¢, and ¢, are the angles of rotation of the pinion and the gear, ¥y and N the pinion and gear tooth
numbers. It is proven in [9] that function ¢,(¢,) of transmission errors is a discontinuous almost linear

function (Fig. 9), and the transfer of meshing between the neighboring teeth is accompanied with noise and
vibration.

The purpose of application of a parabolic profile of the pinion rack-cutter is to provide a parabolic
function of transmission errors represented as

Aga()) = —agy;. L | ' (23)

Such a function is able to absorb linear functions of transmission errors caused by errors of alignment [9,10]
and therefore reduce vibration and noise of the gear drive. In addition, due to pinion profile crowning, the
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conditions of transfer of meshing between the neighboring teeth are improved as well. This is achieved by
the decrease of elastic deformation of teeth at the transfer of meshing.

Longitudinal crowning: 1t was mentioned above that pinion profile crowning does not enable to substitute
the instantaneous line contact of pinion—gear tooth surfaces by point contact. Point contact due to the tool
plunging is achieved by the execution of the equation

E—Ey=—ayl3. : - (24)

Here: £, and E are the initial and current center distance; /p the displacement of the tool in direction

‘parallel to pinion axis (measured from the middle of tooth length); ay the parabola coefficient in parabolic

function (24).

The pinion tooth surface generated by the plunging disk s determined as the sequence of two enveloping
processes.

The first enveloping process provides an intermediate pinion tooth surface Zi” as the envelope to the
family of parabolic rack-cutter surfaces. The cross-section of X f]“ is the axial profile of the disk surface Zp
(see Appendix A).

The second enveloping process provides the final pinton tooth surface Z ‘f‘ as the envelope to the family
of surfaces generated by the plunging disk. It is important to recognize that & ‘13’ is not a cylindrical surface
as the tooth surface of a conventional spur gear.

Finally, we can state that the proposed gear drive formed by a double-crowning pinion tooth surface and
a conventional spur involute tooth surface for the gear have the following features: (1) the tooth surfaces are
m point contact at every instant, and (ii) their meshing is accompanied with a predesigned parabolic
function of transmission errors {see Fig. 10 and Section 7).

%,

A,

I
|
|

-

i
l : I
]

Fig. 10. Transmission function (a), and parabolic function of transmission errors (b).
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- Y.

c .
Py
Fig. 1i. Pinion parabolic rack-cutter.

6. Equations of pinion parabelic rack-cutter
We limit the derivations to the case of pinion parabolic rack-cutter for the driving side. The pinion rack-
cutter surface Z. is a parabolic cylinder and is represented in the auxiliary coordinate system S, (Fig. 11) as

f(e, 0) = | %% |, | AR ' | (25)

The normal to the rack-cutter surface X, is represented as

ar —2a.u.
No(u) =k, x — = I . . p (26)
Sue 0 o o

Origin O, of S, coincides with point Q4 of tangency of gear and pinion rack-cutters (Fig. 7).
The rack-cutter surface X, and its normal are represented in coordinate system S. by the matrix equa-
tions '

re(te, 0) = Mar,, : : _ - . (27)
NC(HC) = I-'cuNa- | . o . . ] . (28)
7. Relation between parabola coefficients a.,a and A¢, . B

Coefficient a. represents the parabola coefficient of the parabolic profile of pinion rack-cutter (se€
Eq. (25) ). Coeflicient @ represents the parabola coefficient in the equation of the predesigned parabolic
function of transmission errors determined as
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Ai(6) = s(6) -~ i3t =-adl _' L ®

The negative sign in Eq. (29) means that the gear must lag in comparison with the pinion in the process
of transformation of rotation.

Our goal is to determine the relations between coefficients a. and « that enable to determine the pre-
designed parabolic function of transmission errors locally, considering as given the derivative of function
Ag,(¢)) at ¢, =0. The other goal is to represent parabola coefficients a. and a considering as given
|A¢) .| for a cycle of meshing. The derivations are based on the following procedure:

Step 1. Eq. (29) yields that

IA¢zmaxJ=a(§])2, o o | (30)

where n/N, determines the cycle of meshing.
Considering that [A¢,,,,| is given in arc sec., we obtain the following equation for the parabola coef-
ficient a

a= rAqmeaxlle
~ 2(180)(3600)"

(%)

(31)

Step 2. We apply Egs. (8.3.39) and (8.3.32) derived in [9] that relate: (i) the curvatures of the pimion and
rack-cutter profiles, and (ii) the pinion and gear profiles. After transformations. we obtain the following
relation between the curvature 4 of the pinion rack-cutter profile and the derivative s,

F(xd,méi) =A[(p, + p)(1 — kyLg) + K4p1p- I 2%4) — Bp, = 0. o o (32)
Here: '
N . . . . '
A4 ={p +'0:)V SIN %y + My, P- COS Ay, _ - B (33)
' . MY S ' | \
B=p sin ocd(l-i-ﬁ) {1 — Kkaly), R (34)
my = [82(00) | - e
21 aqbf 2@ H, : o 5 :

where ¢,(¢,) is the transmission function of the gear drive; p, and p- the radii of the pinion and gear
centrodes being in mesh with the imaginary rack-cutters; L, = |0sP| (Fig. 7): .
Eqgs. (35) and (29) yield that

my = —2a. - —_— | (36)

Step 3. Using equation of curvature of a planar gearing in [9], we obtain the following expression for the
curvature of the parabolic rack-cutter profile at point O, in Fig. 11.

xg = 2ac s (37

Step 4. Eqs. (37), (36), (31} and (32) enable to obtain the coefficient 4, for the pinion parabolic rack-
cutter considering as given [Ad- .,/

Numerical example 1. Parameters of the asymmetric gear drive are: Ny =23, V., = 70, P = 8&, Zq = 35°,
ue = 20°, [Agp | = Sarcs.

Using the procedure discussed above, we obtain that @ = 0.0013, and a4 = 0.0069, a.. = 0.02235 for the
driving, and coast side profiles, respectively.
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8. Simulation of meshing and contact

Simulation of meshing: The algorithm of meshing provides conditions of continuous tangency of tooth
surfaces in an aligned and misaligned gear drives. The precondition of pinion-gear tooth surfaces to be in
point contact is observed. The simulation of meshing of the analyzed gear drive 1s computerized and the
output of the program are: (i) the paths of contact on pinion and gear tooth surfaces, and (ii) the trans-
mission errors caused by misalignment.

The algorithm developed for simulation of meshing is based on the following considerations:

(1) We apply movable coordinate systems S| and S» (Fig. 12) that are rigidly connected to the pinion and
the gear, and the fixed coordinate system Sy where the meshing of surfaces is considered. An auxiliary
coordinate system S, (Fig. 12) is applied for simulation of errors of alignment AE-the change of center
distance and Ay-the change of the shaft angle.

(2) We represent the conditions of continuous tangency of tooth surfaces by the following equations:

1 (e, O, 61) — 1 (14, 6, 62) = 0,

(n 2 (38)
nf.(ucﬂgDsqu)_nf (“1-81-¢1) = .
Eq. (38) represent that surfaces ) and I, have a common poim. and have at this point a commeon

normal. Vector Eq. (38) yield a system of only five independent scalar equations in six unknowns since

Ini"’| = |n,”’| = 1. Thus we obtain

A Trp
Z2g Z,
Y
Yo -
& e 7t3'7 -
2 A Iy
Yq 0z P
%
x
Lo 7
E+AE
x
1 " 2
, .
Y1
?, ' -y
. Oy, 1

Fig. 12. Coordinate systems applied for TCA.
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‘.fi(uc:BDaqb]aut!guqsl):O: f;ecﬁ (I=177S) | (39)

We consider now the solution of equation system (39) with the following preconditions:
(1) There is a set of parameters (obtained as the first guess) designated as

P = (u,0p, ¢1,ul, 67, §))

that satisfy Eq. (39)
(ii) One of the six parameters, say ¢,, is considered as the input one and the Jacobian of the system of
equations differs at P from zero. Thus

D(ﬂ1f2?ﬁ1f;11f5) ’ e
D(uc,0n, u,, 8, ¢,) 70 . (40)

(iii) It follows from the theorem of impiicit function existence [10], that the system of Eq. (39) can be
solved in the neighborhood of P by functions

{1c(@1), 00(d1), (). 6,00, ()} € C. A (41)

Then, it becomes possible as shown in [9] to obtain the paths of contact on gear tooth surfaces. the
transmission function ¢, ( ¢}, and the transmission errors Ad- (o). '

The solution of the system of nonlinear Eqg. (39} is an iterative process and is supported by application of
the subroutine DNEQNF in IMSL library [7].

The results of computation by the developed computer program are illustrated by drawings of Figs. 13-17.
Two cases of design are considered:

Case 1. Two rack-cutters with coinciding straight line profiles are considered. profile crowning is not
provided, but lengitudinal crowning of the pinion s provided by the plunging of the pinion grinding disk to
obtain point contact of pinion—gear tooth surfaces.

Ad: (arcsec.)

A C Transimssion Errors of TCA
25 T T T T T T ! r '

2.4r

2.3f

221

21+

1 TL 1 L 1 L I 1 1 1 X 7\;
5 -20 =157 10 -5 o 5 10 15 20, (degree)

Fig. 13. Function of transmission errors A (¢} caused by Ay = 3 arcmin; generation Case 1.
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A (arcsec.)

A o ’ Transimssion Errors of TCA

. L 1

"7‘5 1 L H H 1 H -
25 20 15 10 -5 0 5 10 15 20 g (degree)

Fig. 14. Function of transmission errors Ad. (¢, ) caused by Az = 3 arcmin: generation Case 1.

Ads (arcsec) -

A Transimssion Errors of TCA
-130 T

-131
-132
-133
-134
-135

, _ -136
|

i L 1 o

-137 L 1 i L 1 L >
25 20 1S -0 5 0 5 10 15 20 4, (degree)

Fig. 15. Function of transmission errors Ag () caused by AE=0.1 mm; generaticn Cuse 2.



1
i
k]

F.L Litvin et al. | Comput. Methods Appl. Mech. Engrg. 188 (2000) 363—-39%)

Az (arcsec.)

A Transimssion Errors of TCA _
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P
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Fig. 16. Function of transmission errors Ag-(¢,} caused by A7 =3 arcmin: generation Case 2.
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Fig. 17. Function of transmission errors A (¢, ) caused by Ai=3 arcmin: generation Case 2,
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N"“‘-w-_ T
-
|

Fig. 18. Examples of bearing contact in misaligned gear drives: (a) AE =0.1 mm, {b) Ay=3 arcmin, (¢) A4 =3 arcmin,

Case 2. Two rack-cutters with mismatched profiles are applied: a straight-line profile for the gear rack-
cutter and a parabolic profile for the pinion rack-cutter (Fig. 7). Thus, profile crowning for the pinion tooth
surface is provided. In addition, longitudinal crowning of the pinion tooth surface is provided by plunging
of the pinion grinding disk.

Then we obtain that the pinion-tooth surfaces are in point contact at every instant and a parabolic
function of transmission errors during the meshing is provided.

Figs. 13 and 14 show the functions of transmission errors obtained for case 1 for errors of alignment
Ay = 3 arcmin and Az = 3 arcmin. Functions of transmission errors are discontinuous ones and they may
cause vibration.

The change of center distance as it could be expected for meshing of surfaces with involute profiles does
not cause transmission errors.

Figs. 15-17 show functions of transmission errors caused by errors of alignment AE. Ay and A/, re-
spectively. The obtained results confirm that a parabolic function of transmission errors is provided indeed.

Simulation of bearing contact: The determination of instantaneous contact ellipses needs the data on
principal curvatures and directions at the contact point and the elastic approach & [9] (taken for our
computations as & = 0.00025 in.). The solution of this problem has been simplificd by expressing the
principal curvatures and the directions of contacting surfaces through the principal curvatures and direc-
tions of the tool generating surfaces [9). The results of computation are represented in Fig. 18 and the
drawings confirm that the bearing contact is localized and stabilized.

9. Stress analysis

Preliminary considerations: The goals of the stress analysis presented in this section are: determination of

contact and bending stresses for two cases of design: asymmetric and symmetric spur gear drives, and
comparison of stresses in both cases. The stress results presented in this paper are obtained using the finite
element method [3,4,12]. These finite element results are obtained by using the general purpose finite ele-
ment computer program ABAQUS/Standard 5.7 [1]. A PC version of this program running on Windows
NT 4.0 operating system is used to obtain the numerical solution for the contact problem by nonlineat
static analysis. _

Two models of contacting teeth based on the real geometry of the pinion and the gear tooth surfaces
have been developed. Since the PC version of ABAQUS does not have an interactive preprocessor, the
CAD package I-Deas master series [6] is used for the development of geometric models and their meshing.
The computations are performed for the asymmetric and symmetric spur gear drives with design param-
eters presented in Numerical example 1 and additional parameters taken as 4, = 1.5 and s, = 0.05 in.

One of the ABAQUS advanta'ges in comparison with other FEA programs is that the ABAQUS can
generate the contact elements automatically after the user appropriately defines the conracr pair of surfaces




— et —i -

F.L Litvin et al. | Compur. Methods Appl. Mech. Engrg. 188 (2000) 363—390 383

as the master and slave ones. The boundary conditions have been defined as follows: the nodes chosen on
the gear tooth base are assumed to be fixed, and the contact of the pinion with the gear is obtained by
turning the pinion about its axis. _

Stress analysis of spur gears with symmetric tooth profiles was the subject of research presented in [2,11].
However, only one geometric model of the contact pair was used (for the pinion tooth) and the action of the
other contacting tooth (of the mating gear) was simulated by application of a contact force to the pinion
model. Therefore, the research performed in [2,11] could provide with good accuracy only the bending
stresses in the root area.

Developed geometric models: The finite element models are shown in Fig. 19. The location of the contact
point corresponds to Oy (Fig. 7). A finer mesh for the two models is considered in the areas of concentration
of stress, that are close to the tooth surfaces and the fillet areas. The fine mesh in such areas is obtained by
setting an appropriate “bias’ during the mapped meshing provided by I-Deas. First order brick elements are
used in Global FE mesh. The total number of elements used is 1460 with 2172 nodes for each geometric
model. The material of the model is steel with the properties of Young’s modulus E = 3 x 107 Ibf/in” and the
Poisson’s ratio v = 0.29. :

FEA: The models have been developed by I-Deas and then transferred to ABAQUS for stress analysis.
The master and slave surfaces have been identified as the gear and pinion tooth surfaces respectively.
Additional 24 internal elements and 48 nodes have been generated automatically in ABAQUS for contact
clements. Two options related to the contact problem, “small sliding”™ and “'no friction”. have been selected.

The stress analysis has been performed for the following three cases:

Case 1. asymmetric spur gear drive with larger pressure angle 35°.

Case 2. asymmetric spur gear drive with smaller pressure angle 20°.

Case 3. symmetric spur gear drive with pressure angles for both sides 25°.

In each of these cases, the contacting models are assumed to have equal and opposite loads resulting
from a torque of 250 Nm applied to the pinion.

Results of analysis: Figs. 20~22 show the contour plot of Von-Mises stresses. The numerical results are
represented in Table |.

The bending stresses obtained in the fillet of the contacting tooth side are considered as tension stresses,
and those in the fillet of the opposite tooth side are considered as compression stresses.

Fig. 19. Models applied for finite element analysis.
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Fig. 20. Stress distribution in Case 1.
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Fig. 21. Stress distribution in Case 2.
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Fig. 22. Stress distribution in Case 3.
Table 1
Obtained pinion maximum Von-Mises stresses (in ksi units)
F.E. models Contact stress Bending stress {tension) Bending stress (compression)
Case | 26.2 8.7 14.6
Case 2 28.6 10.7 10.7
Case 3 30.4 102 : 13.5

Based on the obtained numerical results, the following conclusion can be made: :

I. Maximum contact stresses are reduced by about 15% in Case 1 in comparison with Case 3. However, the -
contact stresses are reduced only by 6% in Case 2 in comparison with Case 3.

2. The tension bending stresses in Case ! are 15% less in comparison with Case 3, but they are almost the

same in Cases 2 and 3.

. The larger pressure angle should be chosen for the driving side profiles.

4. Application of an asymmetric spur gear drive allows to reduce both stresses, the contact and bending
stresses, by choosing the larger pressure angle for the driving side.

[F¥]

10. Conclusion

Based on the performed research, the following conclusions can be drawn:
. Basic aspects of geometry of asymmetric involute spur gears have been represented (Sections 1-4).
- Modified geometry of asymmetric spur gears for reduction of transmission errors and localization of
bearing contact has been developed (Sections 5-7, Appendices A and B).
3. Simulation of meshing and contact of misaligned asymmetric spur gear drive has been developed (Sec-
tion 8).

[
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-4. Stress analysis by application of finite element analysis has been accomplished for asymmetric and sym-

metric spur gear drives (Section 9). It is confirmed that the contact and bending stresses for the driving
side (with a larger pressure angle) of an asymmetric spur gear drive are reduced.

5. Computer programs for the design and analysis of modified asymmetric spur gear drives have been de-
veloped.
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Appendix A. Pinion tooth surface equations

The pinion tooth surface is determined as the result of two enveloping processes (i} in meshing of the
pinion with the rack-cutter, when the intermediate pinion tooth surface Z is generated. and (i) m the
process of generation by a plunging disk, when the final, double- crowned pinion tooth surface b
obtained.

Determination of Z . The rack-cutter parabolic surface is represented in coordinate system S; (Fig. 11).
The rack-cutter and the pmlon perform related translational and rotational motions as shown 1n Fig. 23.
The pinion tooth surface Z ' is determined by the following equations.

rgl)(uc» ec:nl)bl) = MlmNImcrc(uc:Gc)a oo _ (Al)

filue ) =0, e _ (A.2)

where (i, 0.) are the surface parameters of the rack-cutter, ¢, is the generalized parameter of motion.

xC ‘rm
f A
P,V

Oc /— lid - Y

Xy P,

Y
Yy
. Om, 1

Fig. 23. Coordinate systems applied for derivation of pinion tooth surface.
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ﬁq. (A.1) represents in $) the family of pinion rack-cutter surfaces. Eq. (A.2) is the equation of meshing
that can be derived using the condition that the normal to the rack-cutter surface passes through the in-
stantaneous axis of rotation P--P (Fig. 23). After derivations, we represent the equation of meshing as

Si(ue,¥1) = p1¥ (2acu; cos a+ sin a) — (2020 — 2acu.l; + u;) = 0. (A.3)

Determination of double-crowned pinion tooth surfuce: After determination of pinion tooth surface =" it
becomes possible to determine surface Zp, of the pinion grinding disk. The axial section of the grinding disk
is the same as the cross-section of pinion tooth surface * L

We apply for derivation of the double-crowned pinion tooth surface the following coordinate systems:
Siand Sp that are rigidly connected to the pinion and the generating tool; the fixed coordinate system S,
(Fig. 24).

The generating disk performs during the process of generation: (i) translational motion along the =.-axis,
and (i) plunging motion along the x,-axis determined as

% = —ant;, o . (A4)
where 6,1s the displacement along the z;-axis. -
Lowr Lpes Ly

}

Ok

Pinion

OU.’OT V | . _ zu’ Zf

-

Fig. 24. Coordinate systems applied for generation of double-crowned pinion tooth surface.
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- The pinion tooth surface is generated as the envelope to the family of disk tool surfaces.

The derivation of double-crowned pinion tooth surface is based on the following procedure:

Step 1. We use an auxiliary coordinate system S, which origin and axes coincide with the origin and axes
of coordinate system S,. We consider as known equations of profile crowned pinion tooth surface and
represent them in coordinate system S,.

Note: Coordinate axis x, indicates the axis of pinion space while x, indicates that of the pinion tooth.

Step 2. We remind that the axial profile of the disk coincides with the axial section of the profile crowned
pinion tooth surface determined as z, = 0.

Step 3. We derive the disk tooth surface by rotation of its axial profile about the disk axis yp. Then, we

obtain the disk surface as )
m = TD(HC, BD) i ) (AS)
Step 4. We represent the family of disk surfaces in coordinate system S using the matrix equation

11 (e, 80, 81) = MyuMioro (4, fp).- - {AS)

The equation of meshing may be represented as [9]

al‘l 61'1 61’1 N _ : .. . ' ‘
(S g) g =ttt =0 R W
or as -
Np - v = f3(ue. 6, 6) = 0, RN (AS)

where Np, is the normal to the disk surface, v%’” the relative velocity of the disk with respect to the pinicn.
The subscript D indicates that vectors of Eq. (A.8) are represented in coordinate syvstem Sp.

Eq. (A.6) and (A.7) or Eq. (A.8) considered simultaneously determine the envelope 10 the family of tool
surfaces that is the double-crowned pinion tooth surface.

Fig. 25 shows the lines of contact between the disk and the pinion double-crowned tooth surface on the

disk surface.

Lines of contact

Fig. 25. Lines of contact on grinding disk.
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Note: Vector of relative velocity of the disk is determined
axes x; and z,.

During the process of generation the disk performs rotation about the zp-axis to provide the required

magnitude of velocity of grinding (cutting). However, the disk rotation does not affect the mathematical

determination of the envelope (pinion tooth surface) since the disk is a surface of revolution. Therefore, the
rotation of the disk is ignored while the envelope is derived. '

as the velocity of the disk in translation along

Appendix B. Gear tooth surface equations

The gear tooth surface is generated by a straight line rack-cutter. We use for derivations
systems S, and S, that are rigidly connected to the rack-cutter, coordinate system S,
to the gear, and the fixed coordinate system S, (Fig. 26).

coordinate
that is rigidly connected

Fig. 26. Coordinate systems applied for derivation of gear tooth surface.
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> The rack-cutter surface %, and its normal are represented in S, by the following equations o '

Wy COS oty + [y SIN %4

£, 6:) = U Sin acdﬂ—t I, cosay 1 : - : B | . B1)
1
.Nt=k[xg::= CZ’S(’)}T’ _ B T (B.2)
The family of rack-cutter surfaces is represented in coordinate system S- by the matrix equation
12w, B, r2) = Mo (Y )re (1, 82). _ N : - (B3)
Equation of meshing is represented as |
Folue, W) = patpasina —uy = 0. : : S R (B.4)

Egs. (B.3) and (B.4) represent the gear tooth surface.
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